Designing an expert system for fraud detection in private telecommunications networks
نویسنده
چکیده
Telecommunications fraud not only burdens telecom provider’s accountings but burdens individual users as well. The latter are particularly affected in the case of superimposed fraud where the fraudster uses a legitimate user’s account in parallel with the user. These cases are usually identified after user complaints for excess billing. However, inside the network of a large firm or organization, superimposed fraud may go undetected for some time. The present paper deals with the detection of fraudulent telecom activity inside large organizations’ premises. Focus is given on superimposed fraud detection. The problem is attacked via the construction of an expert system which incorporates both the network administrator’s expert knowledge and knowledge derived from the application of data mining techniques on real world
منابع مشابه
Designing an Expert System for Credit Rating of Real Customers of Banks Using Fuzzy Neural Networks
Currently, in Iran's banking system, non-repayment of facilities has become one of the biggest issues, and due to the lack of a proper system for proper allocation of facilities, they face a number of problems, including the problem of allocation of loans, the problem of failure to repay loans Of the central bank, or the amount of facilities increased from the amount of reimbursement. The solut...
متن کاملFraud/Uncollectible Debt Detection Using a Bayesian Network Based Learning System: A Rare Binary Outcome with Mixed Data Structures
TI1e fraud/uncollectible debt1 problem in the telecommunications industry presents two technical challenges: the detection and the treaunent of the account given the detection. In this paper, we focus on the first problem of detection using Bayeshm network models, and we briefly discuss U1e application of a nonnative expert system for U1e treatment at tl1e end. We apply Bayesian network models ...
متن کاملDesigning an expert system for differential diagnosis of β-Thalassemia minor and Iron-Deficiency anemia using neural network
Introduction: Artificial neural networks are a type of systems that use very complex technologies and non-algorithmic solutions for problem solving. These characteristics make them suitable for various medical applications. This study set out to investigate the application of artificial neural networks for differential diagnosis of thalassemia minor and iron-deficiency anemia. Methods: It is...
متن کاملFraud Detection in Health Insurance Using Expert Re-referencing
Fraud is widespread and very costly to the healthcare insurance system. Fraud involves intentional deception or misrepresentation intended to result in an unauthorized benefit. It is shocking because the incidence of health insurance fraud keeps increasing every year. In order to detect and avoid the fraud, data mining techniques are applied. Frauds blow a hole in the insurance industry. Health...
متن کاملDetecting fraud in online games of chance and lotteries
Fraud detection has been an important topic of research in the data mining community for the past two decades. Supervised, semi-supervised, and unsupervised approaches to fraud detection have been proposed for the telecommunications, credit, insurance and health-care industries. We describe a novel hybrid system for detecting fraud in the highly growing lotteries and online games of chance sect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 36 شماره
صفحات -
تاریخ انتشار 2009